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Thermal Diffusion in Ionic Systems t 

F. H. Horne 2 and B. K. Borey 2"3 

Starting from the complete set of equations of hydrodynamics and non- 
equilibrium thermodynamics for a binary uni-univalent salt in an electrolyte 
solution contained between electrodes, we have solved, in part, both the trans- 
ient and the steady-state thermal diffusion problems. Full account is taken of 
nonvanishing space charge near the electrodes. Formulas are obtained for the 
temperature distribution, the electric field, the salt concentration distribution, 
the charge distribution, and the voltage. The effect of Joule heating on the tem- 
perature distribution is very small. The effect of space charge on the electric field 
and on the salt concentration distribution is also small. Applications both to 
solid-state ionic devices such as batteries and to thermal diffusion measurements 
in aqueous electrolyte solutions are mentioned. 

KEY WORDS: ion transport; solid-state batteries; thermal diffusion; ther- 
mocells. 

1. I N T R O D U C T I O N  

Thermocel ls  have been s tudied and  used for over  125 years, and  their  non-  
equi l ibr ium t h e r m o d y n a m i c  descr ip t ion  is readi ly  avai lable  [1 ]. The m a j o r  
features of the nonequ i l ib r ium t h e r m o d y n a m i c  descr ip t ion  are two sets of 
equat ions :  (i) the set of differential  equa t ions  of hydrodynamics ,  the conser-  
va t ion  equat ions ;  and  ( i i ) t he  set of flux-force re la t ionships ,  the Onsager  
equat ions.  In  o rder  to ob ta in  accura te  values of  t r anspor t  p roper t ies  from 
exper imenta l  data ,  and  in o rde r  to design devices and  exper iments  that  
involve t ranspor t ,  it is in pr inciple  necessary to solve the comple te  set of  
t r anspor t  equa t ions  subject  to the ini t ial  and  b o u n d a r y  condi t ions  
a p p r o p r i a t e  to the p rob l em at hand.  
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A "pure" (i.e., one-dimensional) thermal diffusion experiment begins 
when the temperatures of two opposite walls are suddenly changed from 
their initial, identical values to their final, different values. The temperature 
gradient thus produced induces matter flow and the establishment of a con- 
centration gradient. In this experiment, the initial conditions are that the 
temperature and composition are uniform. In the usual experiment, the 
boundary conditions for the composition of each species are due to the fact 
that matter does not flow through the walls. The boundary conditions for 
temperature are time dependent since it is, in fact, impossible to change the 
wall temperatures instantaneously. The time-dependent pure thermal dif- 
fusion problem for impermeable walls has been solved [2]. 

When electrodes are present in a solution containing ions, there are 
additional boundary conditions due to chemical transfer at the electrodes. 
In general, these boundary conditions are well represented by writing the 
ith ion flux Ji into the solution at the electrode as a sum of forward and 
backward processes [3 5]. 

Ji = k i f C i ,  e l e c t r o d e  - -  kib Ci, solution (1) 

where k~f and k~b are, respectively, the forward and backward rate con- 
stants, and ci is the interface concentration in the region indicated. Thus, 
G, so~ution is the concentration of ion i at the solution side of the interface 
between the solution and the electrode. This general boundary condition 
accommodates a variety of situations, including reversible electrodes and 
blocking electrodes. 

If the mass flux of cations in the regions close to the electrodes, or 
indeed anywhere, is different from that of anions, then a macroscopic elec- 
trical charge will be present. It is essential to take account of the existence 
of space charge when considering interfacial transport of ions. Brumleve 
and Buck [3] have obtained space-charge distributions for various elec- 
trolyte systems by solving the transport equations numerically. Space 
charge is of course much more important near the walls than in the bulk of 
the solution. In aqueous electrolyte solutions in conventional elec- 
trochemical settings, the charged region is very small compared with the 
rest of the system. This is not the case, however, in living cells or in thin 
film solid-state batteries. 

In order to obtain analytic solutions of the transport equations 
including nonelectroneutrality, it is necessary to retain the charge as an 
explicit property. For uni-univalent solutions, the two composition 
variables of choice I-6, 7] are the salt concentration c and the charge con- 
centration ~, 

1 1 
C=-~(CI-[-C2) , ~=~ (C2--C1) (2) 
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where cl is the concentration of cations and c 2 is the concentration of 
anions. Clearly, r = 0 in electrically neutral regions. 

In this paper we present the general transport equations for thermal 
diffusion in a uni-univalent electrolyte solution, liquid or solid, with ion 
boundary conditions of the type expressed by Eq. (1). Analytic solutions 
are given for an idealized system whose salt concentration is small enough 
for the Nernst-Planck equations to be valid [7]. 

2. GENERAL TRANSPORT EQUATIONS 

In a nonreacting, one-dimensional system with immobile solvent, the 
equation of conservation of mass of each component is 

(ac~/at) = -(aJ,/ax) (3) 

where c~ is the concentration of component i, t is time, x is the spatial coor- 
dinate, and Ji is the Hittorf diffusion flux defined by 

Ji = c i (v , -  Vo) (4) 

where vz is the velocity of component i and Vo is the velocity of the solvent 
[taken as zero in Eq. (3)]. The equation of conservation of energy for the 
system is well approximated by [5, 7] 

( Cp/V)(aT/at) = (O/ax) tcf(aT/ax ) + ElF (5) 

where Cp is the molar constant-pressure heat capacity of the system, V is 
the molar volume, T is the temperature, KT is the steady-state thermal con- 
ductivity of the system, E is the electric field, which is related to the elec- 
trostatic potential ~b by 

E =  -(O0/Ox) (6) 

and I v is the Faradaic electric current, 

IF = F ~  ziJi (7) 
i 

with zi the charge per mole of component i and F the Faraday constant. 
The total current I is the sum of the Faraday current and Maxwell's dis- 
placement current [3, 7], 

I =  I F + e (~E /~ t )  (8) 
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where e is the permittivity. Electric-field strength is related to charge by the 
Poisson equation, 

e(OE/Ox) = F ~ z ic~ (9) 
i 

The Onsager equations, which relate the diffusion and heat fluxes to 
the gradients of chemical potential and temperature, are [ 1, 7 ] 

-J~ = ~ lij(OT#j/OX ) -[- lio(O In T/Ox) 
J 

(lO) 
-- Jo = Z I~(~TI~/(~X) + IQQ(~ In T/Ox) 

J 

where 10. , liQ, 1~, and IQo are Onsager coefficients, Q denotes heat, and the 
electrochemical-potential gradient in an isobaric system is related to the 
concentration and electric potential by 

i 

with 

#ji  = ( ~Uj/3Ci)Y,p,ckr (12) 

3. DILUTE SOLUTION, UNI-UNIVALENT SOLUTE 

In a sufficiently dilute solution, the l~ in the first of Eqs. (10) vanish for 
i r  j and the solution behaves ideally with respect to chemical interactions 
[7]. Then the first of Eqs. (10) becomes 

- J , = D , ( O c / O x ) +  (2t/Fz,)(O(~/Ox)+ (c,D,Q*/RT2)(OT/Ox) (13) 

where the Nernst Planck diffusion coefficients D~, the conductance 2, the 
transference numbers ti, and 
[5, 7] 

D i = R r l i i / c i ,  

ti = (F2/2) z21ii, 

the heats of transport Q* are defined by 

= Z #I. 
i 

Qi* = ( l i Q / l i i )  = RTI,Q/CiD , 

(14) 

For a single uni-univalent solute, we have, with 1 denoting cations and 2 
anions, 

- J 1  = D~(ac~/ax) + (2t~/F)(O(~/Ox) + (c~Dl Q*/RT2)(OTfi?x) 

- J 2  = D2(~Cz/3X) - (2t2/F)(O(~/~?x) + (c2D2Q*/RT2)(OT/~x) 
(15) 
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Conversion to c and f as the composition variables and to 

1 1 
J c = - ~ ( J l  + J2), J : = - ~ ( J 2 - J 1 )  (16) 

as the fluxes yields 

- J o  = D(~c/Ox) - D'(Of/Ox) + (F /RT) (cD '  - fD)(O(J/Ox) 

+ (CDaT -- fD'a'T)(OT/Ox) 
(17) 

- Jc = D'( Oc/ ax ) - D((?f/ ax ) + ( F/  RT) (  cD - fD ' ) (  a(J/ ax ) 

-F (cD'a'  T -- (DaT)(#T/Ox)  

where 

1 
D = ~ (D 1 + 0 2 )  , 

aT = (D1 Q* + D2 Q* )/2RT2D, 

1 
D ' = ~ ( D 1 - D 2 )  (18) 

a'T = (D1 Q* - D2Q~ ) /2RT2D ' 

and where we have eliminated 2 and the ti in favor of D and D'. The coef- 
ficient a T is similar to the Soret coefficient, the coefficient D is similar to 
the "ambipolar" diffusion coefficient, and the coefficients, a~r and D' 
represent, respectively, thermal diffusion and mass diffusion of the electric 
charge. 

The conservation equations for c and f are 

( & / & )  = -(~Jj~Ox),  (~f/0t) = - ( (?JUax)  (19) 

Since Iv  = F ( J 1 -  ,/2)= - 2 F J r  we also have 

e((?E/&) = I +  2FJ~ (20) 

Moreover, the Poisson equation is 

e(OE/(?x) = - 2 F {  (21) 

4. S T E A D Y  S T A T E  

At the steady state, Jr and Jc are constants, with values fixed by 
Eq. (1). Solving Eqs. (17) for (~c/~x) and (Qf/~x), we find 

( c3c/(?x ) = -- [ DJr - D'Jr )/ ( D 2 - D'2)3 -- ( F/  R T )  r E -  (2RT 2) -1 

x [c (Q* + O*)  + f ( Q *  - Q*)](OT/c3x) 

(af/ax) = - [(D'Jc - DJr 2 - D'2)] - (F /RT)  c E -  (2RT 2)-1 (22) 

• [c (Q* - Q*)  + f (Q* + Q*)](c~T/Ox) 
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where we have used Eq. (6). For constant thermal conductivity, the steady- 
state temperature equation is 

(02 T/Ox 2) = _ (iv/~C T)E (23) 

4.1. Isothermal Case 

When the temperature is uniform throughout the system. Eqs. (22) 
become 

where 

(c~c/~x) = - K -  ( F / R T )  (E, (a(/~?x) = - K '  - ( F / R T )  cE  (24) 

K = ( D J ~ - D ' J ~ ) / ( D 2 - D ' 2 ) ,  K ' = ( D ' J c - D J ~ ) / ( D 2 - D  'z) (25) 

With Eq. (21), Eqs. (24) become 

( Oc/ax ) = - K + (a/4RT)(  aE2/Ox 2) 
(26) 

( O2E/ •x 2) - ( 2F2/eRT)  cE  = (2F/e) K' 

The solutions to the coupled Eqs. (26) are obtained by a perturbation 
approach defined by 

C = g - - ] - ( ~ C  1 -~- (~2C2--  [- . . .  
(27) 

E = E o + 6E 1 + 02E2 + " "  

The lowest-order results are 

E o = - (2F /e t cZ ) {K  ' + ~cp[cosh (xx ) ] / [ s inh (xL /2 ) ]  } 

~o = p [ sinh( xx  ) ] / [  sinhOcL/2 ) ] 
(28) 

ci = - K x -  (pK'/~K)(2/~cL ){1 - (~L/2  )[coshffcx)  ] /[s inhf fcL/2 ) ] } 

- [p2/4~cL sinh2(KL/2)] [sinh0cL ) - ffcL) cosh(2~cx)] 

where ~-1, the inverse debye length, is defined by 

1(, 2 = ( 2F2/eRT)~ (29) 

and where we have required for the charge density at the walls that 

((L/2) = p = - ( (  -- L/2)  (30) 

This condition is used only to provide relatively simple results--Eq. (1) or 
other estimates should be used in particular applications. 
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Of principal importance for application is the electric-potential dif- 
ference across the cell. This is obtained by integrating E to obtain ~b(x) and 
then subtracting to get A~b = ~b(L/2)- q5(-L/2). The perturbation approach 
yields E o as an even function of x, El as an odd function of x, E2 as an 
even function of x, and so forth. The second-order equations for E, c, and 
are very cumbersome and are displayed elsewhere [5].  For d e  we find 

AO = (RT/gF)[K'L - (KL/2g)Z(KL/3)+ 2p - (3p/8)(KL/Zg) 2 ] (31) 

In order to estimate the relative importance of the various terms in 
Eqs. (28) and (31), we note that ~c ranges from about 108 m ~ for 0.01 M 
aqueous solutions at 298 K to about 10 9 m ~ for a 5 M solid solution of 
low dielectric constant at 1000 K. 

If the electrodes allow the passage of cations only, then 

K = (Iv/2FD,) = - K '  (32) 

and the leading terms in the equations for E, c, and A~b become 

E~Iv/eD~tr 2, c ~ g - -  (Iv/2FD1)x 
(33) 

Ar ~ - (  RT/gF)( IF L/2FD1 ) 

A potential difference of about 0.4 V is produced by a current density of 
300 amp. m -2 across a cell 0.01-m thick. 

4.2. Nonisothermal  Case 

A perturbation approach similar to that just discussed leads to the 
temperature distribution 

T= T M + (x/L) A T +  [(L/2) 2 -x2](212/Z~.r) (34) 

where 
1 

T~ =-~ [T(L/2)+ T ( - L / 2 ) ] ,  z lT= ET(L /2 ) -  T ( - L / 2 ) ]  (35) 

and where 2 and ~c T are, respectively, the conductance and the thermal con- 
ductivity. The last term on the right-hand side of Eq. (34) is due to Joule 
heating. Its maximum contribution occurs at the center of the cell, where 
x = 0 .  F O r • T = 1 0 J ' m  ~.K 1 . s - l ,  2 = 1 0 f 2 - ~ . m  1, a current density of 
3 0 0 a m p . m  -2 across a cell 1 0 - 2 m  thick will produce a temperature 
increase of about 5 K, which is negligible compared to T M. The tem- 
perature gradient is 

( aT/Sx ) = ( d T/L ) - (x/L )( 4L~/2KT ) (36) 
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The maximum contribution to (OT/~x) of the Joule-heating term under the 
conditions stated above is 18 K ' m  1, which is negligible for our present 
purposes if (AT/L) is, say, 103K �9 m -1 or 10 K .  cm -1. Moreover, because 
the Joule-heating effect has opposite parity to the temperature-difference 
effect, there is no contribution of Joule heating to the change in &b 
produced by the imposition of a temperature difference. 

With neglect of the Joule-heating term in Eq. (36), Eqs. (23) become 

(ac/ax) = - H -  (F/RT) {E, (a~/ax) = - H ' -  (F/RT) cE (37) 

where 

H=K+c[(Q*+Q*)/2RT2], H '=K'+c[(Q*-Q*) /2RT 2] (38) 

and where we have neglected, in comparison to the c terms, the con- 
tribution of ~ terms to H and H'. 

The additions to the isothermal results are 

E =  Eisot h . . . .  1 - -  (2F/etc2) g[(Q~' - Q*)/2RT2](AT/L) 

C : Cisot h . . . .  1 - - x O [ ( Q *  + Q*)/ZRT2](AT/L) (39) 

A ~  = ( A r  h . . . .  1 + [(Q*- Q*)/2FT] AT 

For aqueous electrolyte solutions, Haase [1] reports Q~' values for typical 
anions (Cl , Br- ,  NO 3, ClOg)  from 1.5 to 1.7 kca l 'mol  *; for typical 
cations (Na +, K +, Ag +) the values of Q* range from -0 .3  to 
- 1 . 0 k c a l . m o l  1. Thus, Q*-Q*~2kcal'mol-l , .~lO4j'mo1-1, while 
Q * + Q * ~ 5 x l 0 3 j . m o 1 - 1 .  The contribution to A~b is about (AT/2OT) 
volts, which is only a few millivolts for small 3 T. Clearly, large A T will 
increase A~b significantly. Tables and graphs illustrating this, along with a 
discussion of the electrical efficiency of a solid-state cell, are presented 
elsewhere [5, 8]. 

5. TIME D E P E N D E N C E  

Four macroscopic relaxation times characterize thermal diffusion in 
charged systems. 

(i) The "warming-up" time is due to the fact that it is not possible to 
shift from identical wall temperatures to different wall temperatures instan- 
taneously. The value of this relaxation time, 7, depends on the apparatus 
and the interface between the apparatus and the system under study. It 
may be determined empirically by fitting the observed time dependence of 
the wall temperature to an exponential function. For example, if the tern- 
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perature at the wall is changed from TM to TH, the exponential expression 
for the wall temperature Tw is 

Tw = TM + (TI-I- TM)(1 --e -'/~) (40) 

Typically [2], '2 is small, of the order of 1 min or less, since it reflects the 
time required to change the temperature of a thin solid, usually metallic, 
wall. 

(ii) The thermal relaxation time, ZT, characterizes the time required 
to reach the thermal steady state. This relaxation time is related to system 
properties and dimensions by [2] 

~T = (L2/~2)( Cp/VKT) (41) 

If both walls have the same warming-up time 7, and if Joule heating is 
negligible, the solution of Eq. (5) for constant thermal conductivity, heat 
capacity, and molar volume is [2] 

T =  TM + A T ( x / L ) - ~  e-U'[sin(~x/L)(z/?)~]/[sin(~/2)(r/7)~] 

- (rT/rC) ~ (-1)mEm(4m2?-,r)]-~[sin(2m~x/L)]e 4m2'm} (42) 
m = l  

For nonelectrolytes and, presumably, polymers, rw is about 1 rain for 
material 0.01 m thick. Reduction of the thickness to 0.001 m reduces r T to 
less than 1 s. 

(iii) The dielectric relaxation time, rD, characterizes the time 
required for the electric field E to attain its steady-state value in the 
absence of concentration gradients. This time is related to system proper- 
ties by 

rD = (~/~) (43) 

Its value for dilute aqueous solutions is about 10 9 S [-6]. 
(iv) The diffusion relaxation time, 0, is defined by 

0 = (L2/~z2Dv) (44) 

where D v is the Fick's law diffusion coefficient, which is related to the 
dilute solution ionic diffusion coefficients Da and D 2 by [7] 

Dv = 2DID2/(DI + D2) (45) 

For liquids, in a cell 0.01 m thick, 0~  1 h. Diffusion coefficients for solids 
are generally much lower than for liquids, and 0 is generally, therefore, 

~40:7.; [ -7 
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much greater, even for thinner cells. The chief point for the present dis- 
cussion is that the relaxation time for diffusion is some 100 times greater 
than for the three processes discussed above. This means that all thermal 
and electrical processes (except for minor readjustments due to concen- 
tration changes) reach steady state long before measurable diffusion occurs. 

With the initial condition that of uniform composition but fully 
established thermal and electrical fields, the conservation equation for com- 
position is [5]  

(~c/~t) = (~/~x) D~[ (~c/~x)- coo(~ V/L)] (46) 

where the Hittorf Soret coefficient ~o is defined by [ 1, 5 ] 

co = a - ~ (47) 

where ~ is the thermal expansivity of the solution and the Sorer coefficient 
a is related to the ionic heats of transport by 

1 
a =-~ (Q* + Q*) /RT  2 (48) 

for a dilute solution. The boundary conditions on Eq. (46) are 

Dv[(3c/Ox) - coo(AT/L)] = - J 2 ,  x = _+(L/2) (49) 

where J 2  is the steady-state constant wall flux of Section 4. 
The solution of Eq. (46) for constant Dv and oo and for times greater 

than (0/2) is [5]  

c = coo q- (2fl/g) 2 F(x) exp{ - (t/O)[1 + (/~/~z) 2 ] } (50) 

where c ~ is the steady-state concentration distribution of Section 4 and 
where 

and where 

8 =  -(~o/2) A T  (51) 

F(x)  = F(O )[cos(xx/L ) + (g/fl) sin(~x/L ) ] e -~(x/L) 

(52) 
F(O) = [ g + (LJU2~Dv)  ](2/~)[1 + (/J/~)] -2 e~/Z 

In order to find analytic solutions for E, ~, and A~b for (0/2) < t < c~, it is 
necessary to solve 

(02E/•z 2) - K 2 ( c / g ) E =  (2F/e) H' (53) 
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for E, Eq. (21) for ~, and then perform a further integration to obtain A~b. 
This task has not yet been accomplished because of the mathematical dif- 
ficulties introduced by the substitution of Eqs. (50)-(52) into Eq. (53). It is 
likely that only numerical solutions can be found. This is worth doing 
because the time required to reach the steady state of aqueous or solid- 
state electrolytic cells is of considerable practical importance. 
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